Calculate start and end date of vegetation periods based on daily average air temperature and the day of the year (DOY). The sum of day degrees within the vegetation period is included for convenience.
Usage
vegperiod(
dates,
Tavg,
start.method,
end.method,
Tsum.out = FALSE,
Tsum.crit = 0,
species = NULL,
est.prev = 0,
check.data = TRUE
)
Arguments
- dates
vector of calendar dates (objects of class
Date
or something understood byas.Date()
). Must contain entire years ifest.prev > 0
else the first year may comprise only November and December.- Tavg
vector of daily average air temperatures in degree Celsius. Same length as
dates
.- start.method
name of method to use for vegetation start. One of
"Menzel"
(needs additional argumentspecies
, see below),"StdMeteo"
resp."ETCCDI"
,"Ribes uva-crispa"
. Can be abbreviated (partial matching). For further discussion see Details.- end.method
name of method to use for vegetation end. One of
"vonWilpert"
,"LWF-BROOK90"
,"NuskeAlbert"
and"StdMeteo"
resp."ETCCDI"
. Can be abbreviated (partial matching). For further discussion see Details.- Tsum.out
boolean. Return the sum of daily mean temperatures above
Tsum.crit
within vegetation period, also known as growing day degrees.- Tsum.crit
threshold for sum of day degrees. Only daily mean temperatures
> Tsum.crit
will be tallied. The default of0
prevents negative daily temperatures from reducing the sum. Climate change studies often use a threshold of5
.- species
name of tree species (required if
start.method="Menzel"
ignored otherwise).Must be one of
"Larix decidua"
,"Picea abies (frueh)"
,"Picea abies (spaet)"
,"Picea abies (noerdl.)"
,"Picea omorika"
,"Pinus sylvestris"
,"Betula pubescens"
,"Quercus robur"
,"Quercus petraea"
,"Fagus sylvatica"
.- est.prev
number of years to estimate previous year's chill days for the first year (required if
start.method="Menzel"
ignored otherwise).Menzel
requires the number of chill days of previous November and December. Ifest.prev = 0
the first year is used to get the previous year's chill days and dropped afterwards. Thus, a year from the time series is lost. To avoid losing a year,est.prev = n
estimates the previous year's chill days for the first year from the average ofn
first years of the time series.- check.data
Performs plausibility checks on the temperature data to ensure that the temperatures have not been multiplied by ten. Plausible range is -35 to +40°C.
Value
A data.frame with year and DOY of start and end day of
vegetation period. If Tsum.out=TRUE
, the data.frame contains an
additional column with the sum of day degrees within vegetation periods.
Details
Common methods for determining the onset and end of thermal vegetation
periods are provided, for details see next sections. Popular choices with
regard to forest trees in Germany are Menzel
and vonWilpert
. Climate
change impact studies at NW-FVA are frequently conducted using Menzel
with
"Picea abies (frueh)" and NuskeAlbert
for all tree species; with tree
species specifics accounted for in subsequent statistical models.
Start methods:
The method Menzel
implements the algorithm described in
Menzel (1997). The method is parameterized for 10 common tree species. It
needs previous year's chill days. ETCCDI
resp.
StdMeteo
is a simple threshold based procedure as defined by the
Expert Team on Climate Change Detection and Indices (cf. ETCCDI 2009, Frich
et al. 2002, Zhang et al. 2011) leading to quite early vegetation starts.
This method is widely used in climate change studies. The method
Ribes uva-crispa
is based on leaf-out of gooseberry (Janssen
2009). It was developed by the Germany's National Meteorological Service
(Deutscher Wetterdienst, DWD) and is more robust against early starts than
common simple meteorological procedures.
End methods:
The end method vonWilpert
is based on von Wilpert (1990). It
was originally developed for Picea abies in the Black Forest but is
commonly used for all tree species throughout Germany. As usual, the rules
regarding the soilmatrix are neglected in this implementation.
LWF-BROOK90
is -for the sake of convenience- a
reimplementation of the LWF-BROOK90 VBA (version 3.4) variant of "vonWilpert"
(Hammel and Kennel 2001). Their interpretation of von Wilpert (1990) and the
somewhat lower precision of VBA was mimicked. NuskeAlbert
provide a very simple method which is inspired by standard climatological
procedures but employs a 7 day moving average and a 5 °C threshold (cf.
Walther and Linderholm 2006). ETCCDI
resp. StdMeteo
is a simple threshold based procedure as defined by the Expert Team on
Climate Change Detection and Indices (cf. ETCCDI 2009, Frich et al. 2002,
Zhang et al. 2011) leading to quite late vegetation ends.
References
ETCCDI (2009) Climate Change Indices: Definitions of the 27 core indices. http://etccdi.pacificclimate.org/list_27_indices.shtml
Frich, P., Alexander, L., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A. and Peterson, T. (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193--212. doi:10.3354/cr019193 .
Hammel, K. and Kennel, M. (2001) Charakterisierung und Analyse der Wasserverfügbarkeit und des Wasserhaushalts von Waldstandorten in Bayern mit dem Simulationsmodell BROOK90. Forstliche Forschungsberichte München.
Janssen, W. (2009) Definition des Vegetationsanfanges. Internal Report, Deutscher Wetterdienst, Abteilung Agrarmeteorologie.
Menzel, A. (1997) Phänologie von Waldbäumen unter sich ändernden Klimabedingungen - Auswertung der Beobachtungen in den Internationalen Phänologischen Gärten und Möglichkeiten der Modellierung von Phänodaten. Forstliche Forschungsberichte München.
von Wilpert, K. (1990) Die Jahrringstruktur von Fichten in Abhängigkeit vom Bodenwasserhaushalt auf Pseudogley und Parabraunerde: Ein Methodenkonzept zur Erfassung standortsspezifischer Wasserstreßdispostion. Freiburger Bodenkundliche Abhandlungen.
Walther, A. and Linderholm, H. W. (2006) A comparison of growing season indices for the Greater Baltic Area. International Journal of Biometeorology, 51(2), 107--118. doi:10.1007/s00484-006-0048-5 .
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., Trewin, B. and Zwiers, F. W. (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851--870. doi:10.1002/wcc.147 .
Examples
data(goe)
vegperiod(dates=goe$date, Tavg=goe$t,
start.method="Menzel", end.method="vonWilpert",
species="Picea abies (frueh)", est.prev=5)
#> year start end
#> 1 2001 119 274
#> 2 2002 127 279
#> 3 2003 125 279
#> 4 2004 116 279
#> 5 2005 124 279
#> 6 2006 126 271
#> 7 2007 124 279
#> 8 2008 125 279
#> 9 2009 115 279
#> 10 2010 116 279
# take chill days from first year, which is then dropped
vegperiod(dates=goe$date, Tavg=goe$t, start="Menzel", end="vonWilpert",
species="Picea abies (frueh)", est.prev=0)
#> year start end
#> 1 2002 127 279
#> 2 2003 125 279
#> 3 2004 116 279
#> 4 2005 124 279
#> 5 2006 126 271
#> 6 2007 124 279
#> 7 2008 125 279
#> 8 2009 115 279
#> 9 2010 116 279
# add column with sum of day degrees in vegetation periods
vegperiod(dates=goe$date, Tavg=goe$t, Tsum.out=TRUE,
start="StdMeteo", end="StdMeteo")
#> year start end Tsum
#> 1 2001 34 347 3474.7
#> 2 2002 36 329 3273.8
#> 3 2003 65 323 3273.7
#> 4 2004 38 333 3361.4
#> 5 2005 69 327 3229.4
#> 6 2006 18 308 2891.6
#> 7 2007 84 354 3216.4
#> 8 2008 64 322 3273.7
#> 9 2009 48 321 3195.9
#> 10 2010 88 356 3359.8